Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 533: 63-76, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37827357

ABSTRACT

Benzophenone-3 (BP-3) is the most commonly used UV filter in cosmetics, which is absorbed through the skin and crosses the blood-brain barrier. This compound increases extracellular glutamate concentrations, lipid peroxidation, the number of microglia cells and induces process of apoptosis. The aim of this study was to determine the effect of BP-3 on the activation and polarization of microglial cells in the frontal cortex and hippocampus of adult male rats exposed to BP-3 prenatally and then for two weeks in adulthood. It has been found, that exposure to BP-3 reduced the expression of the marker of the M2 phenotype of glial cells in both examined brain structures. An increase in the CD86/CD206 microglial phenotype ratio, expression of transcription factor NFκB and activity of caspase-1 were observed only in the frontal cortex, whereas BP-3 increased the level of glucocorticoid receptors in the hippocampus. The in vitro study conducted in the primary culture of rat frontal cortical microglia cells showed that BP-3 increased the LPS-stimulated release of pro-inflammatory cytokines IL-1α, IL-1ß, TNFα, but in cultures without LPS there was decreased IL-1α, IL-6 and TNFα production, while the IL-18 and IP-10 was elevated. The obtained results indicate that differences in the level of immunoactivation between the frontal cortex and the hippocampus may result from the action of this compound on glucocorticoid receptors. In turn, changes in cytokine production in microglial cells indicate that BP-3 aggravates the LPS-induced immunoactivation.


Subject(s)
Microglia , Tumor Necrosis Factor-alpha , Rats , Animals , Male , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Receptors, Glucocorticoid/metabolism , Cytokines/metabolism
2.
Reprod Toxicol ; 120: 108450, 2023 09.
Article in English | MEDLINE | ID: mdl-37543253

ABSTRACT

Benzophenone derivatives such as benzophenone-2 (BP-2) belong to the group of endocrine disrupting compounds (EDCs). Increased exposure to EDCs is considered to be an important factor behind the decline of human fertility. The main aim of the present study was to determine the effect of BP-2 on testicular function specified by sperm analysis, the level of sex hormones and their receptors. Since BP-2 has been shown to activate the immune system, another aim of the research was to verify the hypothesis that the immune system may be contributing to the testis toxicity of this compound and for this purpose changes in macrophage and lymphocyte populations in the testes were determined. BP-2 at a dose of 100 mg/kg was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks. It was shown that BP-2 reduced the number and motility of sperm and increased the number of sperm showing morphological changes. By determining the concentration of sex hormones, a significant decrease in testosterone levels and an increase in the blood levels of 17ß-estradiol were demonstrated. Similar to the results obtained from the blood samples, testosterone levels in the testes were lowered, which could affect sperm parameters. The effect of BP-2 on lowering testosterone levels and the number of sperm cells may be due to immunoactivation in the testes, because it has been detected that this compound significantly decreased the number of the immunosuppressive resident testicular macrophages (TMs) (CD68-CD163+), but increased pro-inflammatory TMs with monocyte-like properties (CD68+CD163-).


Subject(s)
Semen , Testis , Rats , Male , Humans , Animals , Gonadal Steroid Hormones , Benzophenones/toxicity , Testosterone , Sperm Count
3.
Pharmacol Rep ; 74(5): 859-870, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35951260

ABSTRACT

Metabolic disturbances in the brain are assumed to be early changes involved in the pathogenesis of depression, and these alterations may be intensified by a deficiency of thyroid hormones. In contrast to glucose metabolism, the link between altered brain lipids and the pathogenesis of depression is poorly understood, therefore in the present study, we determine transcription factors and enzymes regulating cholesterol and fatty acid biosynthesis in the brain structures in an animal model of depression, hypothyroidism and the coexistence of these diseases.In used model of depression, a decrease in the active form of the transcription factor SREBP-2 in the hippocampus was demonstrated, thus suggesting a reduction in cholesterol biosynthesis. In turn, in the hypothyroidism model, the reduction of cholesterol biosynthesis in the frontal cortex was demonstrated by both the reduction of mature SREBP-2 and the concentration of enzymes involved in cholesterol biosynthesis. The lower expression of LDL receptors in the frontal cortex indicates the restriction of cholesterol uptake into the cells in the model of coexistence of depression and hypothyroidism. Moreover, the identified changes in the levels of SNAP-25, GLP-1R and GLP-2R pointed to disturbances in synaptic plasticity and neuroprotection mechanisms in the examined brain structures.In conclusion, a reduction in cholesterol synthesis in the hippocampus in the model of depression may be the reason for the reduction of synaptic plasticity, whereas a lower level of LDL-R occurring in the frontal cortex in rats from the model of depression and hypothyroidism coexistence could be the reason of anxiogenic and depression-like behaviors.


Subject(s)
Hypothyroidism , Lipid Metabolism , Animals , Rats , Depression/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Hypothyroidism/metabolism , Thyroid Hormones , Cholesterol/metabolism , Brain/metabolism , Fatty Acids , Glucose/metabolism , Models, Animal , Receptors, LDL/metabolism
4.
Neurotox Res ; 37(3): 683-701, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31970650

ABSTRACT

Benzophenone-3 (BP-3), the most widely used UV chemical filter, is absorbed well through the skin and gastrointestinal tract and can affect some body functions, including the survival of nerve cells. Previously, we showed that BP-3 evoked a neurotoxic effect in male rats, but since the effects of this compound are known to depend on gender, the aim of the present study was to show the concentration and potential neurotoxic action of this compound in the female rat brain. BP-3 was administered dermally to female rats during pregnancy, and then in the 7th and 8th weeks of age to their female offspring. The effect of BP-3 exposure on short-term and spatial memory, its concentrations in blood, the liver, the frontal cortex, and the hippocampus, and the effect on selected markers of brain damage were determined. Also, the impact of BP-3 on sex and thyroid hormone levels in blood and hematological parameters was examined. It has been found that this compound was present in blood and brain structures in females at a lower concentration than in males. BP-3 in both examined brain structures increased extracellular glutamate concentration and enhanced lipid peroxidation, but did not induce the apoptotic process. The tested compound also evoked hyperthyroidism and decreased the blood progesterone level and the number of erythrocytes. The presented data indicated that, after the same exposure to BP-3, this compound was at a lower concentration in the female brain than in that of the males. Although BP-3 did not induce apoptosis in the hippocampus and frontal cortex, the increased extracellular glutamate concentration and lipid peroxidation, as well as impaired spatial memory, suggested that this compound also had adverse effects in the female brain yet was weaker than in males. In contrast to the weaker effects of the BP-3 on females than the brain of males, this compound affected the endocrine system and evoked a disturbance in hematological parameters more strongly than in male rats.


Subject(s)
Apoptosis/drug effects , Benzophenones/toxicity , Frontal Lobe/drug effects , Gonadal Steroid Hormones/blood , Hippocampus/drug effects , Sunscreening Agents/toxicity , Thyroid Hormones/blood , Administration, Cutaneous , Animals , Apoptosis Regulatory Proteins/drug effects , Benzophenones/administration & dosage , Female , Frontal Lobe/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Sunscreening Agents/administration & dosage
5.
Toxicol Sci ; 171(2): 485-500, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31368502

ABSTRACT

Benzophenone-3 is the most commonly used UV filter. It is well absorbed through the skin and gastrointestinal tract. Its best-known side effect is the impact on the function of sex hormones. Little is known about the influence of BP-3 on the brain. The aim of this study was to show whether BP-3 crosses the blood-brain barrier (BBB), to determine whether it induces nerve cell damage in susceptible brain structures, and to identify the mechanism of its action in the central nervous system. BP-3 was administered dermally during the prenatal period and adulthood to rats. BP-3 effect on short-term and spatial memory was determined by novel object and novel location recognition tests. BP-3 concentrations were assayed in the brain and peripheral tissues. In brain structures, selected markers of brain damage were measured. The study showed that BP-3 is absorbed through the rat skin, passes through the BBB. BP-3 raised oxidative stress and induced apoptosis in the brain. BP-3 increased the concentration of extracellular glutamate in examined brain structures and changed the expression of glutamate transporters. BP-3 had no effect on short-term memory but impaired spatial memory. The present study showed that dermal BP-3 exposure may cause damage to neurons what might be associated with the increase in the level of extracellular glutamate, most likely evoked by changes in the expression of GLT-1 and xCT glutamate transporters. Thus, exposure to BP-3 may be one of the causes that increase the risk of developing neurodegenerative diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...